
S1 Appendix
Recursion equations
In each generation we census the genotype frequencies in male and female
gametes/gametophytes (hereafter, gametes) between meiosis (and any meiotic drive) and gametic
competition. At this stage we denote the frequencies of X- and Y-bearing gametes from males
and females x◦i and y◦i . The superscript ◦ ∈ {♂,♀} specifies the sex of the diploid that the
gamete came from. The subscript i ∈ {1, 2, 3, 4} specifies the genotype at the selected locus A
and at the novel sex-determining locus M, where 1 = AM , 2 = aM , 3 = Am, and 4 = am. The
gamete frequencies from each sex sum to one,

∑

i x
◦
i + y

◦
i = 1.

Competition then occurs among gametes of the same sex (e.g., among eggs and among
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see Table 1). The genotype frequencies after gametic competition are x◦,si = w◦
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i is the mean fitness of male (◦ = ♂) or female

(◦ = ♀) gametes.
Random mating then occurs between gametes to produce diploid zygotes. The frequencies of

XX zygotes are then denoted as xxij , XY zygotes as xyij , and YY zygotes as yyij , where A and
M locus genotypes are given by i, j ∈ {1, 2, 3, 4}, as above. In XY zygotes, the haplotype
inherited from an X-bearing gamete is given by i and the haplotype from a Y-bearing gamete is
given by j. In XX and YY zygotes, individuals with diploid genotype ij are equivalent to those
with diploid genotype ji; for simplicity, we use xxij and yyij with i ≠ j to denote the average of
these frequencies, xxij = (x♀,si x♂,sj + x♀,sj x♂,si )∕2 and yyij = (y♀,si y♂,sj + y♀,sj y♂,si )∕2.

Denoting the M locus genotype by b ∈ {MM,Mm,mm} and the X locus genotype by
c ∈ {XX,XY , Y Y }, zygotes develop as females with probability kbc . Therefore, the
frequencies of XX females are given by xx♀ij = kbcxxij , XY females are given by
xy♀ij = kbcxyij , and YY females are given by yy♀ij = kbcyyij . Similarly, XX male frequencies
are xx♂ij = (1 − kbc)xxij , XY male frequencies are xy♂ij = (1 − kbc)xyij , and YY males
frequencies are yy♂ij = (1 − kbc)yyij . This notation allows both the ancestral and novel
sex-determining regions to determine zygotic sex according to an XY system, a ZW system, or
an environmental sex-determining system. In addition, we can consider any epistatic dominance
relationship between the two sex-determining loci. Here, we assume that the ancestral
sex-determining system (X locus) is XY (kMMXX = 1 and kMMXY = kMMY Y = 0) or ZW
(kMMZZ = 0 and kMMZW = kMMWW = 1) and epistatically recessive to a dominant novel
sex-determining locus, M (kMmc = kmmc = k).

Selection among diploids then occurs according to the diploid genotype at the A locus,
l ∈ {AA,Aa, aa}, for an individual of type ij (see Table 1). The diploid frequencies after
selection in sex ◦ are given by xx◦,sij = w◦
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diploids of sex ◦.
Finally, these diploids undergo meiosis to produce the next generation of gametes.

Recombination and sex-specific meiotic drive occur during meiosis. Here, we allow any relative
locations for the X, A, and M loci by using three parameters to describe the recombination rates
between them. R is the recombination rate between the A and M loci, � is the recombination
rate between the M and X loci, and r is the recombination rate between the A and X loci (Fig 1).
S1 Table shows replacements that can be made for each possible ordering of the loci assuming
that there is no cross-over interference. During meiosis in sex ◦, meiotic drive occurs such that,
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in Aa heterozygotes, a fraction �◦ of gametes produced carry the A allele and (1 − �◦) carry the
a allele.

Among gametes from sex ◦, the frequencies of haplotypes (before gametic competition) in
the next generation are given by

x◦
′

1 =xx◦,s11 + xx◦,s13 ∕2 + (xx◦,s12 + xx◦,s14 )�
◦

− R(xx◦,s14 − xx◦,s23 )�
◦

+ (xy◦,s11 + xy◦,s13 )∕2 + (xy◦,s12 + xy◦,s14 )�
◦

− r(xy◦,s12 − xy◦,s21 )�
◦ − �(xy◦,s13 − xy◦,s31 )∕2

+
[

− (R + r + �)xy◦,s14 + (R + � − r)xy◦,s41
+ (R + r − �)xy◦,s23 + (R + � − r)xy◦,s32

]

�◦∕2

(S1.1a)

x◦
′

2 =xx◦,s22 + xx◦,s24 ∕2 + (xx◦,s12 + xx◦,s23 )�
◦

− R(xx◦,s23 − xx◦,s14 )�
◦

(xy◦,s22 + xy◦,s24 )∕2 + (xy◦,s21 + xy◦,s23 )(1 − �
◦)

− r(xy◦,s21 − xy◦,s12 )(1 − �
◦) − �(xy◦,s24 − xy◦,s42 )∕2

+
[

− (R + r + �)xy◦,s23 + (R + � − r)xy◦,s32
+ (R + r − �)xy◦,s14 + (R + � − r)xy◦,s41

]

(1 − �◦)∕2

(S1.1b)

x◦
′

3 =xx◦,s33 + xx◦,s13 ∕2 + (xx◦,s23 + xx◦,s34 )�
◦

− R(xx◦,s23 − xx◦,s14 )�
◦

(xy◦,s33 + xy◦,s31 )∕2 + (xy◦,s32 + xy◦,s34 )�
◦

− r(xy◦,s34 − xy◦,s43 )�
◦ − �(xy◦,s31 − xy◦,s13 )∕2

+
[

− (R + r + �)xy◦,s32 + (R + � − r)xy◦,s23
+ (R + r − �)xy◦,s41 + (R + � − r)xy◦,s14

]

�◦∕2

(S1.1c)

x◦
′

4 =xx◦,s44 + xx◦,s34 ∕2 + (xx◦,s14 + xx◦,s24 )�
◦

− R(xx◦,s14 − xx◦,s23 )�
◦

(xy◦,s44 + xy◦,s42 )∕2 + (xy◦,s41 + xy◦,s43 )(1 − �
◦)

− r(xy◦,s43 − xy◦,s34 )(1 − �
◦) − �(xy◦,s42 − xy◦,s24 )∕2

+
[

− (R + r + �)xy◦,s41 + (R + � − r)xy◦,s14
+ (R + r − �)xy◦,s32 + (R + � − r)xy◦,s23

]

(1 − �◦)∕2

(S1.1d)

y◦
′

1 =yy◦,s11 + yy◦,s13 ∕2 + (yy◦,s12 + yy◦,s14 )�
◦

− R(yy◦,s14 − yy◦,s23 )�
◦

(xy◦,s11 + xy◦,s31 )∕2 + (xy◦,s21 + xy◦,s41 )�
◦

− r(xy◦,s21 − xy◦,s12 )�
◦ − �(xy◦,s31 − xy◦,s13 )∕2

+
[

− (R + r + �)xy◦,s41 + (R + � − r)xy◦,s14
+ (R + r − �)xy◦,s32 + (R + � − r)xy◦,s23

]

�◦∕2

(S1.1e)
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y◦
′

2 =yy◦,s22 + yy◦,s24 ∕2 + (yy◦,s12 + yy◦,s23 )�
◦

− R(yy◦,s23 − yy◦,s14 )�
◦

(xy◦,s22 + xy◦,s42 )∕2 + (xy◦,s12 + xy◦,s32 )(1 − �
◦)

− r(xy◦,s12 − xy◦,s21 )(1 − �
◦) − �(xy◦,s42 − xy◦,s24 )∕2

+
[

− (R + r + �)xy◦,s32 + (R + � − r)xy◦,s23
+ (R + r − �)xy◦,s41 + (R + � − r)xy◦,s14

]

(1 − �◦)∕2

(S1.1f)

y◦
′

3 =yy◦,s33 + yy◦,s13 ∕2 + (yy◦,s23 + yy◦,s34 )�
◦

− R(yy◦,s23 − yy◦,s14 )�
◦

(xy◦,s33 + xy◦,s13 )∕2 + (xy◦,s23 + xy◦,s43 )�
◦

− r(xy◦,s43 − xy◦,s34 )�
◦ − �(xy◦,s13 − xy◦,s31 )∕2

+
[

− (R + r + �)xy◦,s23 + (R + � − r)xy◦,s32
+ (R + r − �)xy◦,s14 + (R + � − r)xy◦,s41

]

�◦∕2

(S1.1g)

y◦
′

4 =yy◦,s44 + yy◦,s34 ∕2 + (yy◦,s14 + yy◦,s24 )�
◦

− R(yy◦,s14 − yy◦,s23 )�
◦

(xy◦,s44 + xy◦,s24 )∕2 + (xy◦,s14 + xy◦,s34 )(1 − �
◦)

− r(xy◦,s34 − xy◦,s43 )(1 − �
◦) − �(xy◦,s24 − xy◦,s42 )∕2

+
[

− (R + r + �)xy◦,s14 + (R + � − r)xy◦,s41
+ (R + r − �)xy◦,s23 + (R + � − r)xy◦,s32

]

(1 − �◦)∕2.

(S1.1h)

The full system is therefore described by 16 recurrence equations (three diallelic loci in two
sexes, 23 × 2 = 16). However, not all diploid types are produced under certain sex-determining
systems. For example, with the M allele fixed and an ancestral XY sex-determining system,
there are XX females and XY males (x◦3 = x◦4 = y♂3 = y♂4 = y♀i = 0, ∀ i). In this case, the
system only involves six recursion equations, which we assume below to calculate the equilibria.
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